Ordinary and twisted K-theory
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The main topic of this thesis consists in Ordinary and Twisted Topological K-Theory. We begin by describing generalized cohomology theories through the Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows us to deduce its structural properties from the framework of generalized cohomology. Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to construct the Thom isomorphism as well as the integration map, which is known as Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map, which provides an interpretation of K-Theory through homotopy classes of continuous functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the Grothendieck group of twisted vector bundles as a model for finite-order Twisted K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles of Fredholm operators, that holds for twisting classes of any order. Finally, we compare these two models in the finite-order setting.
Descrição
Palavras-chave
K-teoria topológica, Teorias cohomológicas generalizadas, K-teoria ordinária, Geometria de spin, Isomorfismo de thom, Mapa de gysin, Operadores de Fredholm, Aplicação do índice, K-teoria torcida, Topological K-theory, Generalized cohomology theories, Ordinary K-theory, Spin geometry, Thom isomorphism, Gysin map, Fredholm operators, Index map, Twisted K-theory
Citação
CLEMENTE, Gabriel Longatto. Ordinary and twisted K-theory. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15841.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
