Leis de conservação: teoria geral

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

In this thesis we study some aspects of the theory of Partial Differential Equations (PDE's), the theory of the existence and the uniqueness of classical solutions to the Cauchy problem u_t+f'(u)u_x=0, u(0,x)=u_0(x) in the range Π_T=[0,T)xR, where f∈C²(R) and u_0∈C¹(R). Furthermore, we will show some results on generalized solutions and build a generalized solution for functions f(u)=u³ and f(u)=sen u, both with five discontinuities lines. Next, some notions of Kruzhkov's generalized entropy solution are presented. Finally, we will discuss the solutions of the Riemann problem for a concave or convex function f and how concave or convex envelopes allow us to solve the Riemann problem for a function f∈C¹(R).

Descrição

Citação

VIANA, Matheus Magaiver Barbosa. Leis de conservação: teoria geral. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15864.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil