Nonparametric pragmatic hypothesis testing
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
In statistical testing, a pragmatic hypothesis is an extension of a precise one, taking cases on the vicinity of the null as being equally worthy of appraisal. Unlike standard procedures, pragmatic hypotheses allow the user to evaluate more relevant assumptions and, at the same time, provide strategies to tackle Big Data responsibly, avoiding common drawbacks. However, up until now, these procedures have been applied only when a parametric family is assumed for the data. In this master’s thesis, we explore pragmatic hypotheses in a nonparametric setting, which drastically reduces the number of presuppositions and provides more realistic scenarios. By expanding the theory in Coscrato et al. (2019) to a nonparametric context, we delimit the different types of precise hypotheses of interest and the respective challenges each of them presents. Then, we derive two kinds of tests for nonparametric pragmatic hypotheses: one that adheres to standard procedures and one that is agnostic (which accepts, rejects or remains undecided on a given hypothesis), both obeying the property of monotonicity. Lastly, we use the Pólya tree process for building tests in a multitude of applications, showing how sample size, confidence/credible levels and the threshold of a pragmatic hypothesis impact the decision of the test.
Descrição
Citação
LASSANCE, Rodrigo Ferrari Lucas. Nonparametric pragmatic hypothesis testing. 2022. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/16368.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
