• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Estatística - PPGEs
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Estatística - PPGEs
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Ponderação de modelos com aplicação em regressão logística binária

Thumbnail
View/Open
DissJBB.pdf (617.9Kb)
Date
2006-04-18
Author
Brocco, Juliane Bertini
Metadata
Show full item record
Abstract
This work consider the problem of how to incorporate model selection uncertainty into statistical inference, through model averaging, applied to logistic regression. It will be used the approach of Buckland et. al. (1997), that proposed an weighed estimator to a parameter common to all models in study, where the weights are obtained by information criteria or bootstrap method. Also will be applied bayesian model averaging as shown by Hoeting et. al. (1999), where posterior probability is an average of the posterior distributions under each of the models considered, weighted by their posterior model probability. The aim of this work is to study the behavior of the weighed estimator, both, in the classic approach and in the bayesian, in situations that consider the use of binary logistic regression, with foccus in prediction. The known model-choice selection method Stepwise will be considered as form of comparison of the predictive performance in relation to model averaging.
URI
https://repositorio.ufscar.br/handle/ufscar/4599
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT