Show simple item record

dc.contributor.authorEudes, Amanda Morales
dc.date.accessioned2016-06-02T20:06:51Z
dc.date.available2015-04-27
dc.date.available2016-06-02T20:06:51Z
dc.date.issued2015-02-25
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/4602
dc.description.abstractIn survival analysis is studied the time until the occurrence of a particular event of interest and in the literature, the most common approach is parametric, where the data follow a specific probability distribution. Various known distributions maybe used to accommodate failure time data, however, most of these distributions are not able to accommodate non-monotonous hazard functions. Kumaraswamy (1980) proposed a new probability distribution and, based on that, recently Cordeiro and de Castro (2011) proposed a new family of generalized distributions, the so-called Kumaraswamy generalized (Kum-G). In addition to its flexibility, this distribution may also be considered for unimodal and tub shaped hazard functions. The objective of this dissertation is to present the family of Kum-G distributions and their particular cases to analyze lifetime data of individuals at risk, considering that part of the population will never present the event of interest, and considering that covariates may influence the survival function and the cured proportion of the population. Some properties of these models will be discussed as well as appropriate estimation methods, in the classical and Bayesian approaches. Finally, applications of such models are presented to literature data sets.eng
dc.description.sponsorshipUniversidade Federal de Minas Gerais
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectAnálise de sobrevivênciapor
dc.subjectKumaraswamy generalizadapor
dc.subjectAbordagem bayesianapor
dc.subjectFração de curapor
dc.subjectSurvival analysiseng
dc.subjectKumaraswamy generalizedeng
dc.subjectBayesian approacheng
dc.subjectLong term modeleng
dc.subjectCovariateseng
dc.titleFamília Kumaraswamy-G para analisar dados de sobrevivência de longa duraçãopor
dc.typeDissertaçãopor
dc.contributor.advisor1Tomazella, Vera Lucia Damasceno
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8870556978317000por
dc.description.resumoEm análise de sobrevivência estuda-se o tempo até a ocorrência de um determinado evento de interesse e na literatura, uma abordagem muito utilizada é a paramétrica, em que os dados seguem uma distribuição de probabilidade. Diversas distribuições conhecidas são utilizadas para acomodar dados de tempos de falha, porém, grande parte destas distribuições não é capaz de acomodar funções de risco não monótonas. Kumaraswamy (1980) propôs uma nova distribuição de probabilidade e, baseada nela, mais recentemente Cordeiro e de Castro (2011) propuseram uma nova família de distribuições generalizadas, a Kumaraswamy generalizada (Kum-G). Esta distribuição, além de ser flexível, contém distribuições com funções de risco unimodal e em forma de banheira. O objetivo deste trabalho é apresentar a família de distribuições Kum-G e seus casos particulares para analisar dados de tempo de vida de indivíduos em risco, considerando que uma parcela da população nunca apresentarão evento de interesse, além de considerarmos que covariáveis influenciem na função de sobrevivência e na proporção de curados da população. Algumas propriedades destes modelos serão abordadas, bem como métodos adequados de estimação, tanto na abordagem clássica quanto na bayesiana. Por fim, são apresentadas aplicações de tais modelos a conjuntos de dados existentes na literatura.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEspor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICApor
dc.contributor.authorlatteshttp://lattes.cnpq.br/1678613581879501por


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record