Mostrar registro simples

dc.creatorDuque, Juliana Lilian
dc.date.accessioned2016-06-02T19:05:56Z
dc.date.available2012-05-16
dc.date.available2016-06-02T19:05:56Z
dc.date.issued2012-02-24
dc.identifier.citationDUQUE, Juliana Lilian. Um processo baseado em parágrafos para a extração de tratamentos de artigos científicos do domínio biomédico. 2012. 124 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/496
dc.description.abstractCurrently in the medical field there is a large amount of unstructured information (i.e., in textual format). Regarding the large volume of data, it makes it impossible for doctors and specialists to analyze manually all the relevant literature, which requires techniques for automatically analyze the documents. In order to identify relevant information, as well as to structure and store them into a database and to enable future discovery of significant relationships, in this paper we propose a paragraph-based process to extract treatments from scientific papers in the biomedical domain. The hypothesis is that the initial search for sentences that have terms of complication improves the identification and extraction of terms of treatment. This happens because treatments mainly occur in the same sentence of a complication, or in nearby sentences in the same paragraph. Our methodology employs three approaches for information extraction: machine learning-based approach, for classifying sentences of interest that will have terms to be extracted; dictionary-based approach, which uses terms validated by an expert in the field; and rule-based approach. The methodology was validated as proof of concept, using papers from the biomedical domain, specifically, papers related to Sickle Cell Anemia disease. The proof of concept was performed in the classification of sentences and identification of relevant terms. The value obtained in the classification accuracy of sentences was 79% for the classifier of complication and 71% for the classifier of treatment. These values are consistent with the results obtained from the combination of the machine learning algorithm Support Vector Machine with the filter Noise Removal and Balancing of Classes. In the identification of relevant terms, the results of our methodology showed higher F-measure percentage (42%) compared to the manual classification (31%) and to the partial process, i.e., without using the classifier of complication (36%). Even with low percentage of recall, there was no impact observed on the extraction process, and, in addition, we were able to validate the hypothesis considered in this work. In other words, it was possible to obtain 100% of recall for different terms, thus not impacting the extraction process, and further the working hypothesis of this study was proven.eng
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectInteligência artificialpor
dc.subjectBanco de dadospor
dc.subjectMineração de textospor
dc.subjectReconhecimento de padrõespor
dc.subjectExtração de informaçãopor
dc.subjectAnemia falciformepor
dc.subjectTratamentospor
dc.subjectPré-Processamentopor
dc.subjectDomínio Biomédicopor
dc.subjectInformation Extractioneng
dc.subjectTreatmentseng
dc.subjectText Miningeng
dc.subjectPreprocessingeng
dc.subjectBiomedical Domaineng
dc.subjectSickle Cell Anemiaeng
dc.titleUm processo baseado em parágrafos para a extração de tratamentos de artigos científicos do domínio biomédicopor
dc.typeDissertaçãopor
dc.contributor.advisor1Ciferri, Ricardo Rodrigues
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8382221522817502por
dc.creator.Latteshttp://lattes.cnpq.br/2616679912003387por
dc.description.resumoAtualmente na área médica existe uma grande quantidade de informações não estruturadas (i.e., em formato textual) sendo produzidas na literatura médica. Com o grande volume de dados, torna-se impossível que os médicos e especialistas da área analisem toda a literatura de forma manual, exigindo técnicas para automatizar a análise destes documentos. Com o intuito de identificar as informações relevantes, estruturar e armazenar estas informações em um banco de dados, para posteriormente identificar relacionamentos interessantes entre as informações extraídas, nesta dissertação é proposto um processo baseado em parágrafos para a extração de tratamentos de artigos científicos do domínio biomédico. A hipótese é que a busca inicial de sentenças que possuem termos de complicação melhora a eficiência na identificação e na extração de termos de tratamento. Isso acontece porque tratamentos ocorrem principalmente na mesma sentença de complicação ou em sentenças próximas no mesmo parágrafo. Esta metodologia utiliza três abordagens de extração de informação encontradas na literatura: abordagem baseada em aprendizado de máquina para classificar as sentenças de interesse; abordagem baseada em dicionário com termos validados pelo especialista da área e abordagem baseada em regras. A metodologia foi validada como prova de conceito, utilizando artigos do domínio biomédico, mais especificamente da doença Anemia Falciforme. A prova de conceito foi realizada na classificação de sentenças e identificação de termos relevantes. O valor da acurácia obtida na classificação de sentenças foi de 79% para o classificador de complicação e 71% para o classificador de tratamento. Estes valores condizem com os resultados obtidos com a combinação do algoritmo de aprendizado de máquina Support Vector Machine juntamente com a aplicação do filtro Remoção de Ruído e Balanceamento das Classes. Na identificação de termos relevantes, os resultados da metodologia proposta obteve percentual superior de 42% de medida-F comparado à classificação manual (31%) e comparado ao processo parcial, ou seja, sem utilizar o classificador de complicação (36%). Mesmo com a baixa revocação, foi possível obter 100% de revocação para os termos distintos de tratamento, não impactando o processo de extração, e portanto a hipótese considerada neste trabalho foi comprovada.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-graduação em Ciência da Computaçãopor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpor


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples