• As hipersuperfíces de Sbrana-Cartan 

      Bronzatti, Marinez; http://lattes.cnpq.br/4947618032482642 (Universidade Federal de São CarlosBRUFSCarPrograma de Pós-graduação em Matemática, 2013-01-09)
      In this work, based on the papers [5] and [6], we present the classification of Euclidean hypersurfaces that admit nontrivial isometric deformations, called Sbrana -Cartan hypersurfaces, by means of the Gauss parameterization.
    • A transformação de Darboux-Bianchi para superfícies isotérmicas em R³. 

      Canevari, Samuel da Cruz; http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4758593A3 (Universidade Federal de São CarlosBRUFSCarPrograma de Pós-graduação em Matemática, 2004-04-15)
      In this work we develop the transformation theory for isothermic surfaces in Euclidean space IR3 due to Darboux and Bianchi. As a consequence, we describe a method for constructing new solutions of the nonlinear system of ...
    • Imersões isométricas de formas espaciais em Sn x R e Hn x R 

      Canevari, Samuel da Cruz; http://lattes.cnpq.br/8347655512422075 (Universidade Federal de São CarlosUFSCarPrograma de Pós-graduação em MatemáticaCâmpus São Carlos, 2015-06-08)
      In this thesis we classify the isometric immersions f : Mm ^ Sm+p x R with m > 3 P < m — ^d c < 1, where Mm denotes a Riemannian manifold with constant sectional curvature equal to c. We obtain partial results on the ...
    • Euclidean hypersurfaces with genuine conformal deformations in codimension two 

      Chion Aguirre, Sergio Julio; http://lattes.cnpq.br/2305959565667431 (Universidade Federal de São CarlosUFSCarPrograma de Pós-graduação em MatemáticaCâmpus São Carlos, 2018-01-05)
      We classify hypersurfaces f:Mn → Rn+1 with a principal curvature of multiplicity n − 2 that admit a genuine conformal deformation f':Mn → Rn+2. That a conformal deformation f':Mn → Rn+2 of f is genuine means that there ...
    • G-variedades riemannianas como hipersuperfícies de formas espaciais. 

      Gonçalves, Ion Moutinho (Universidade Federal de São CarlosBRUFSCarPrograma de Pós-graduação em Matemática, 2006-02-20)
      (See full text for download) It is proved that an isometric immersion f: Mn ! Qn+1 c of a compact Riemannian mani-fold of dimension n ¸ 3 into a space form of dimension n + 1 is equivariant with respect to a Lie group ...
    • A transformação vetorial de Ribaucour para subvariedades de curvatura constante 

      Guimarães, Daniel da Silveira; http://lattes.cnpq.br/3520357439188664 (Universidade Federal de São CarlosUFSCarPrograma de Pós-graduação em MatemáticaCâmpus São Carlos, 2015-06-09)
      In this work we obtain a reduction of the vectorial Ribaucour transformation that preserves the class of submanifolds with constant sectional curvature of space forms. As a consequence, a process is derived to generate ...
    • Hipersuperfícies conformemente euclidianas com curvatura média ou escalar constante 

      Rei Filho, Carlos Gonçalves do; http://lattes.cnpq.br/5461170290751462 (Universidade Federal de São CarlosUFSCarPrograma de Pós-graduação em MatemáticaCâmpus São Carlos, 2016-11-10)
      In this work we study conformally flat hypersurfaces f: M3 ^ Q4(c) with three distinct principal curvatures in a space form with constant sectional curvature c, under the assumption that either its mean curvature H or its ...
    • Imersões isométricas em produtos de duas formas espaciais 

      Santos, Bruno Mendonça Rey dos; http://lattes.cnpq.br/0482550420604550 (Universidade Federal de São CarlosBRUFSCarPrograma de Pós-graduação em Matemática, 2012-04-27)
      In this thesis we study isometric immersions into products of two space forms using the approach introduced by Lira et al in [18]. Parallel isometric immersions into products of two space forms with nonzero sectional ...
    • A Equação de Codazzi em superfícies 

      Santos, Maria Rosilene Barroso dos; http://lattes.cnpq.br/5772735504029374 (Universidade Federal de São CarlosBRUFSCarPrograma de Pós-graduação em Matemática, 2011-03-04)
      In this work, based on the article The Codazzi Equation for Surfaces by Juan A. Aledo, José M. Espinar and José A. Gálvez [8], we describe some applications of an abstract theory for the Codazzi equation on surfaces. ...