A transformação vetorial de Ribaucour para subvariedades de curvatura constante
Abstract
In this work we obtain a reduction of the vectorial Ribaucour transformation
that preserves the class of submanifolds with constant sectional curvature of space forms.
As a consequence, a process is derived to generate a new family of such submanifolds
starting from a given one. We prove a decomposition theorem for this transformation,
from which the classical permutability theorem for the Ribaucour transformation of submanifolds
with constant sectional curvature follows. Given k scalar Ribaucour transforms
of a submanifold with constant sectional curvature, we prove the existence of a Bianchi
k-cube all of whose vertices are submanifolds with the same constant sectional curvature,
each of which is given by means of explicit algebraic formulas. A further reduction of the
transformation is shown to preserve the class of Lagrangian submanifolds of dimension n
and constant sectional curvature c of complex space forms of complex dimension n and
constant holomorphic sectional curvature 4c. In particular, explicit parametrizations in
terms of elementary functions of examples with arbitrary dimension and curvature are
provided. A decomposition theorem and a version of the Bianchi cube for this transformation
are also obtained.