• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Matemática - PPGM
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Matemática - PPGM
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

O princípio do máximo de Omori-Yau e generalizações

Thumbnail
View/Open
5895.pdf (871.7Kb)
Date
2014-01-31
Author
Franco, Felipe de Aguilar
Metadata
Show full item record
Abstract
In this work we seek to establish a first contact with Geometric Analysis, aiming the understanding of the Good Shadow Principle of Fontenele and Xavier ([FX11]), which is a generalization of the Omori-Yau Principle. We will expose the basic results that are needed for their comprehension, and extend the study to other topics of Geometric Analysis, as the heat kernel, the existence of exhaustion functions and estimates to the gradient of harmonic functions and subsolutions of the heat equation. Once understood the Good Shadow Principle, we intend to extend it by proving that the class of the second order uniformly bumpable manifolds, introduced by Azagra and Fry in [AF10], also satisfies this principle.
URI
https://repositorio.ufscar.br/handle/ufscar/5901
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT