Subordinação fractal para operadores de Schrödinger unidimensionais
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
We study fractal subordinacy theory for one-dimensional Schrödinger operators. First,
we review results on Hausdorff subordinacy for discrete one-dimensional Schrödinger operators in order to analyze the differences and similarities of these results with respect to the packing setting. By using methods of packing subordinacy, we have obtained pac-
king continuity properties of spectral measures of such operators. Then, we apply these
methods to Sturmian operators with rotation number of quasibounded density to show
that they have purely α-packing continuous spectrum. Moreover, we show that spectral
fractal dimensional properties of discrete Schrödinger operators with Sturmian potentials
of bounded density and with sparse potentials are preserved under suitable polynomial decaying perturbations, when the spectrum of these perturbed operators have some singular continuous component. Finally, we performed an introductory study of fractal subordinacy for continuous one-dimensional Schrödinger operators defined in bounded intervals.
Descrição
Citação
BAZÃO, Vanderléa Rodrigues. Subordinação fractal para operadores de Schrödinger unidimensionais. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7737.