Obtenção de estruturas porosas altamente bioativas via sinterização do Biosilicato®

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

In the present work, scaffolds were obtained through the controlled sintering of Biosilicate®. This material possesses good mechanical properties and its bioactivity level is comparable to that of bioglasses, making it an interesting candidate for use as a scaffold to stimulate bone tissue regeneration. Previous studies have found that a secondary crystalline phase is formed when Biosilicate® is heat-treated at high temperatures (T > 700°C). The in vitro bioactivity tests revealed that the presence of the secondary phase is not harmful, but instead enhances the bioactivity of Biosilicate® to a level comparable to that of Bioglass - 45S5. Two different techniques were used in the synthesis of scaffolds: (1) the addition of porogen agents, and (2) the replication method. Five porogen agents were tested and compared: naphthalene, cassava starch, corn starch, polyethylene beads and carbon black. The first technique yielded scaffolds with a total porosity of 67 to 87% in a highly interconnected porous structure. The best result was achieved with carbon black, which resulted in an average pore size of 230 μm and a total porosity of 87%, making it the most promising porogen agent for application as a scaffold. The replication technique led to the formation of scaffolds with a total porosity of 96% and open cells in the range of 435 945 μm, with an average cell size of 650 μm.

Descrição

Citação

CROVACE, Murilo Camuri. Synthesis of highly bioactive porous structures via sintering of Biosilicate®. 2009. 141 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced