Estimativas ótimas para certos teoremas generalizados de Borsuk-Ulam e Ljusternik-Schnirelmann
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The classic Theorems of Borsuk-Ulam and Ljusternik-Schnirelmann have many generalizations, among which we point out that given by C. Schupp [12] and H. Steinlein [14]. Schupp generalizes the Borsuk-Ulam Theorem by replacing the Z2-free action on the n-sphere by a Zp-free action, where p is any prime number. In the generalization of the Ljusternik-Schnirelmann Theorem maden by Steinlein, the n-sphere is replaced by a normal space M on which Zp acts freely. We explore in this dissertation the subsequent results of Steinlein
[15] in which is proved that the estimates of the Schupp s Theorem are the best possible and the estimates for the Steinlein s Theorem can be improved in certain cases, furthermore a sort of converse of the Steinlein Theorem is
valid. The concept of genus of a Zp-space is fundamental for these theorems and the genus of the n-sphere is n + 1 independently of the prime number and the Zp-free action on Sn. We realize that the method employed in the
proof on this result can be used to estimate an upper bound for the genus of a topological n-manifold that admits a Zp-free action.
Descrição
Citação
AMARAL, Fabíolo Moraes. Estimativas ótimas para certos teoremas generalizados de Borsuk-Ulam e Ljusternik-Schnirelmann. 2005. 85 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2005.