Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n)

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

This paper presents a comparative study of the predictive power of four suitable regression methods for situations in which data, arranged in the planning matrix, are very poorly multicolinearity and / or high dimensionality, wherein the number of covariates is greater the number of observations. In this study, the methods discussed are: principal component regression, partial least squares regression, ridge regression and LASSO. The work includes simulations, wherein the predictive power of each of the techniques is evaluated for di erent scenarios de ned by the number of covariates, sample size and quantity and intensity ratios (e ects) signi cant, highlighting the main di erences between the methods and allowing for the creating a guide for the user to choose which method to use based on some prior knowledge that it may have. An application on real data (not simulated) is also addressed.

Descrição

Citação

CASAGRANDE, Marcelo Henrique. Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n). 2016. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7954.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced