Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n)
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
This paper presents a comparative study of the predictive power of four suitable regression
methods for situations in which data, arranged in the planning matrix, are very
poorly multicolinearity and / or high dimensionality, wherein the number of covariates is
greater the number of observations.
In this study, the methods discussed are: principal component regression, partial least
squares regression, ridge regression and LASSO.
The work includes simulations, wherein the predictive power of each of the techniques
is evaluated for di erent scenarios de ned by the number of covariates, sample size and
quantity and intensity ratios (e ects) signi cant, highlighting the main di erences between
the methods and allowing for the creating a guide for the user to choose which method
to use based on some prior knowledge that it may have.
An application on real data (not simulated) is also addressed.
Descrição
Citação
CASAGRANDE, Marcelo Henrique. Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n). 2016. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7954.