Ordinary and twisted K-theory
| dc.contributor.advisor1 | Ruffino, Fabio Ferrari | |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2512107188781159 | por |
| dc.contributor.author | Clemente, Gabriel Longatto | |
| dc.contributor.authorlattes | http://lattes.cnpq.br/9621252774701915 | por |
| dc.date.accessioned | 2022-04-11T16:19:09Z | |
| dc.date.available | 2022-04-11T16:19:09Z | |
| dc.date.issued | 2022-03-28 | |
| dc.description.abstract | The main topic of this thesis consists in Ordinary and Twisted Topological K-Theory. We begin by describing generalized cohomology theories through the Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows us to deduce its structural properties from the framework of generalized cohomology. Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to construct the Thom isomorphism as well as the integration map, which is known as Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map, which provides an interpretation of K-Theory through homotopy classes of continuous functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the Grothendieck group of twisted vector bundles as a model for finite-order Twisted K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles of Fredholm operators, that holds for twisting classes of any order. Finally, we compare these two models in the finite-order setting. | eng |
| dc.description.resumo | O tópico principal desta dissertação é a K-Teoria Ordinária e Torcida. Começamos descrevendo teorias cohomológicas generalizadas através dos Axiomas de Eilenberg-Steenrod a fim de estabelecer a K-Teoria Ordinária nesses termos. Isto nos permite deduzir suas propriedades estruturais do arcabouço da cohomologia generalizada. Então, expomos as noções elementares da Geometria de Spin para relacioná-la com a K-Teoria Ordinária através do Teorema de Atiyah-Bott-Shapiro. Este resultado nos permite definir o isomorfismo de Thom bem como o mapa de integração, que é conhecido como mapa de Gysin. Depois disso, refraseamos a K-Teoria Ordinária por meio da aplicação do Índice, que nos fornece uma interpretação da K-Teoria através de classes de homotopia de funções contínuas. Em seguida, lidamos com a K-Teoria Torcida. Primeiro, introduzimos o grupo de Grothendieck dos fibrados vetoriais torcidos como um modelo para a K-Teoria Torcida de ordem finita. Então, descrevemos o modelo de dimensão infinita, através de fibrados apropriados de operadores de Fredholm, que lida com classes de torção de qualquer ordem. Finalmente, comparamos estes dois modelos no contexto de ordem finita. | por |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | por |
| dc.description.sponsorshipId | Processo nº 2019/22159-8 | por |
| dc.identifier.citation | CLEMENTE, Gabriel Longatto. Ordinary and twisted K-theory. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15841. | * |
| dc.identifier.uri | https://repositorio.ufscar.br/handle/20.500.14289/15841 | |
| dc.language.iso | eng | eng |
| dc.publisher | Universidade Federal de São Carlos | por |
| dc.publisher.address | Câmpus São Carlos | por |
| dc.publisher.initials | UFSCar | por |
| dc.publisher.program | Programa de Pós-Graduação em Matemática - PPGM | por |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
| dc.subject | K-teoria topológica | por |
| dc.subject | Teorias cohomológicas generalizadas | por |
| dc.subject | K-teoria ordinária | por |
| dc.subject | Geometria de spin | por |
| dc.subject | Isomorfismo de thom | por |
| dc.subject | Mapa de gysin | por |
| dc.subject | Operadores de Fredholm | por |
| dc.subject | Aplicação do índice | por |
| dc.subject | K-teoria torcida | por |
| dc.subject | Topological K-theory | eng |
| dc.subject | Generalized cohomology theories | eng |
| dc.subject | Ordinary K-theory | eng |
| dc.subject | Spin geometry | eng |
| dc.subject | Thom isomorphism | eng |
| dc.subject | Gysin map | eng |
| dc.subject | Fredholm operators | eng |
| dc.subject | Index map | eng |
| dc.subject | Twisted K-theory | eng |
| dc.subject.cnpq | CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA | por |
| dc.title | Ordinary and twisted K-theory | eng |
| dc.title.alternative | K-teoria ordinária e torcida | por |
| dc.type | Dissertação | por |
Arquivos
Pacote Original
1 - 2 de 2
Carregando...
- Nome:
- Dissertação_GabrielClemente.pdf
- Tamanho:
- 2.17 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Versão final da dissertação de mestrado
Carregando...
- Nome:
- Carta_Comprovante_GabrielClemente.pdf
- Tamanho:
- 333.27 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Carta comprovante