Amostragem aleatória e extensões para predição de eventos raros

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

In classification problems, the prediction of rare events, that is, when the class of interest is underrepresented„ is often a difficult issue to solve. Classical versions of algorithms suffer several problems when being trained when the response variable is unbalanced, and certain metrics, such as accuracy, lose value when comparing different models. In this dissertation, we present different random sampling techniques and their applications in extensions of ensemble techniques that aim to solve this dilemma. Although extensions exist for most methods used in multi-class problems, we focus on their use for dichotomous problems. In addition, we performed simulations on databases seeking to observe advantages and shortcomings of the methods used, with emphasis on a credit concession database, where the imbalance is severe (below 5%)

Descrição

Citação

SANTOS, Richard Guilherme dos. Amostragem aleatória e extensões para predição de eventos raros. 2024. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21499.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil