Amostragem aleatória e extensões para predição de eventos raros
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
In classification problems, the prediction of rare events, that is, when the class of interest is underrepresented„ is often a difficult issue to solve. Classical versions of algorithms suffer several problems when being trained when the response variable is unbalanced, and certain metrics, such as accuracy, lose value when comparing different models.
In this dissertation, we present different random sampling techniques and their applications in extensions of ensemble techniques that aim to solve this dilemma. Although extensions exist for most methods used in multi-class problems, we focus on their use for dichotomous problems. In addition, we performed simulations on databases seeking to observe advantages and shortcomings of the methods used, with emphasis on a credit concession database, where the imbalance is severe (below 5%)
Descrição
Palavras-chave
Citação
SANTOS, Richard Guilherme dos. Amostragem aleatória e extensões para predição de eventos raros. 2024. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21499.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
