Development of stable and high-performance polyaniline activated carbon electrodes for capacitive deionization desalination

dc.contributor.advisor1Ruotolo, Luís Augusto Martins
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6167735734348703por
dc.contributor.authorBarcelos, Kamilla Malverdi
dc.contributor.authorlatteshttp://lattes.cnpq.br/4285214258496042por
dc.date.accessioned2021-04-29T18:55:16Z
dc.date.available2021-04-29T18:55:16Z
dc.date.issued2021-04-19
dc.description.abstractCapacitive deionization (CDI) emerged as a cost-effective alternative for the desalination of brackish water (salt concentration lower than 10 g L−1). Significant progress in electrode materials in terms of salt adsorption capacity (SAC) and charge efficiency (QE) has been performed in the last few years. However, there are still challenging issues concerning the improvements of the adsorption/desorption kinetics and the electrode stability for long-term operation. In this sense, the main goal of this thesis was the development of stable electrodes of polyaniline (PAni)-activated carbons (PAC) for long-term desalination, with optimized electrosorption/desorption kinetics. The comparison between blade-casting (DB) and free-standing (FS) electrodes of p-toluenesulfonate-doped PAC (PAC/PTS) showed the effects of electrode interparticle porosity and thickness on their textural and electrochemical properties and enabled a better understanding of how tuning the preparation technique of the CDI electrodes can improve the desalination performance, especially in terms of adsorption/desorption kinetics. Although the different electrodes perform similarly in terms of gravimetric salt adsorption capacities, FS electrodes outperform the DB electrodes in terms of volumetric salt adsorption capacities. These carbon films were more compact, and a large quantity of electroactive material was available for salt adsorption. Therefore, if the material cost is not a limitation, the maximum amount of salt could be removed using compact CDI cells with FS electrodes. On the other hand, when the electrosorption and desorption kinetics are considered, the DB electrode presented superior performance, mainly due to its higher interparticle porosity that minimizes the distance of ion diffusion from the bulk solution to the inner surface, thus facilitating the access of the ions to the micropores. These results demonstrated that the faster kinetics provided by enhanced mass transfer in thin electrodes with high interparticle porosity can be decisive for the selection of the best electrode in CDI applications, specially aiming for future applications in flow-through CDI cells. Sequentially, different strategies were studied in order to optimize the desalination performance and the long-term operation stability of PAC/PTS electrodes. Additionally, the new sulfate-doped PAni-activated carbon (PAC/S) was proposed to investigate the influence of chemical and textural properties of the electrodes on the desalination stability. Chemical treatments with ethylenediamine and (3-aminopropyl)triethoxysilane were used to change the chemical surface groups and the potentials of zero charge (EPZC) to more negative values of the materials and promote asymmetry between the electrodes. Symmetric and membrane CDI (MCDI) configurations were also investigated for performance comparison. The control of the potential distribution in asymmetric cells was pointed out as an effective strategy to suppress the carbon oxidation reactions responsible for the SAC loss and improve the long-term stability. However, the best performance and long-term stability were achieved using PAC/PTS electrodes in the MCDI configuration. The use of ion-exchange membranes (IEM) had proved to be a feasible method to improve the electrosorption capacity by reducing the effect of co-ion expulsion and inhibit the faradaic reactions by limiting the transport of the electrochemically active species across the IEM. For this cell configuration, a remarkable value of SAC (~32 mg g-1 at 1.2 V), along with 100% of performance retention was observed over 100 cycles. Our findings enable a better understanding of how to mitigate faradaic reactions and improve the long-term stability of PAC electrodes, thus providing promising electrodes for large-scale CDI applications.eng
dc.description.resumoA deionização capacitiva (DIC) surgiu como uma alternativa econômica para a dessalinização de água salobra (concentração de sal menor que 10 g L−1). Nos últimos anos, tem-se observado um avanço significativo em materiais de eletrodos em termos da capacidade de adsorção de sal (CAS) e eficiência de carga (QE). No entanto, questões desafiadoras relacionadas à melhoria da cinética e estabilidade dos eletrodos em operações de longo prazo ainda persistem. Neste sentido, o principal objetivo desta tese foi o desenvolvimento de eletrodos estáveis de carvão ativado de polianilina (PAni) (PAC), com cinéticas de eletrossorção e dessorção otimizadas. A comparação entre eletrodos blade-casting (DB) e free-standing (FS) de PAC dopado com p-toluenossulfonato (PAC/PTS) evidenciou os efeitos da porosidade interpartícula e da espessura dos filmes sobre as suas propriedades texturais e eletroquímicas e possibilitou entender como o ajuste da técnica de preparação dos eletrodos pode melhorar seus desempenhos na dessalinização, principalmente em termos das cinéticas de adsorção/dessorção. Embora os diferentes eletrodos apresentem desempenho semelhante em termos da capacidade de adsorção de sal gravimétrica, os eletrodos FS superam os DB em termos da capacidade de adsorção de sal volumétrica. Os filmes de carbono FS são mais compactos, sendo assim há uma maior quantidade de material eletroativo disponível para adsorção de sal. Portanto, se o custo do material não for uma restrição, a máxima quantidade de sal pode ser removida ao se utilizar células de dessalinização compactas construídas com eletrodo FS. Por outro lado, quando as cinéticas de eletrossorção e dessorção foram consideradas, o eletrodo DB apresentou desempenho superior, principalmente devido à sua maior porosidade interpartícula, a qual minimiza a distância de difusão iônica da solução bulk para a superfície interna, facilitando assim o acesso dos íons aos microporos. Esses resultados demonstraram que a cinética mais rápida proporcionada pela transferência de massa facilitada em filmes finos com alta porosidade interpartícula pode ser decisiva para a seleção do melhor eletrodo em aplicações de DIC, especialmente visando futuras aplicações em células de dessalinização flow-through. Na sequência, diferentes estratégias foram estudadas com o objetivo de otimizar o desempenho e a estabilidade operacional a longo prazo dos eletrodos PAC/PTS. Adicionalmente, um novo carvão ativado de PAni dopado com sulfato (PAC/S) foi proposto para investigar a influência das diferentes propriedades químicas e texturais dos materiais sobre a estabilidade do eletrodo na dessalinização. Tratamentos químicos com etilenodiamina e (3-aminopropil) trietoxissilano foram utilizados para modificar os grupos superficiais químicos dos PACs e deslocar seus potenciais de carga zero (EPZC) para valores mais negativos e assim promover a assimetria entre os eletrodos. Ademais, as configurações simétricas e de DIC com membrana (MDIC) foram investigadas para comparação de desempenho. O controle da distribuição de potencial em células assimétricas foi apontado como uma estratégia eficaz para suprimir as reações de oxidação do carbono, que são responsáveis pela queda na CAS, e melhorar a estabilidade a longo prazo. No entanto, o melhor desempenho foi alcançado com eletrodos PAC/PTS em uma configuração MDIC. Assim, o uso de membranas de troca iônica (MTI) em células de DIC provou ser um método viável para melhorar a capacidade de eletrossorção pela redução do efeito da expulsão de co-íons, além de inibir as reações faradáicas através da diminuição do transporte de espécies eletroquimicamente ativas através das MTI. Para essa configuração de célula, um valor notável de CAS (~ 32 mg g-1 a 1,2 V), juntamente com 100% de retenção do desempenho foram observados ao longo de 100 ciclos. Os resultados obtidos permitiram uma melhor compreensão de como mitigar reações faradáicas e melhorar a estabilidade a longo prazo dos eletrodos de PAC, fornecendo eletrodos promissores para aplicações em larga escala de DIC.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.description.sponsorshipIdCAPES: 88882.332806/2019-01por
dc.identifier.citationBARCELOS, Kamilla Malverdi. Development of stable and high-performance polyaniline activated carbon electrodes for capacitive deionization desalination. 2021. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14198.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/20.500.14289/14198
dc.language.isoengpor
dc.publisherUniversidade Federal de São Carlospor
dc.publisher.addressCâmpus São Carlospor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Química - PPGEQpor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectDessalinização da águapor
dc.subjectDeionização capacitivapor
dc.subjectCarvão ativado de polianilinapor
dc.subjectWater desalinationeng
dc.subjectCapacitive deionizationeng
dc.subjectPolyaniline-activated carboneng
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICApor
dc.titleDevelopment of stable and high-performance polyaniline activated carbon electrodes for capacitive deionization desalinationeng
dc.title.alternativeDesenvolvimento de eletrodos de carvão ativado de polianilina estáveis e de alta performance para dessalinização por deionização capacitivapor
dc.typeTesepor

Arquivos

Pacote Original

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
Tese - Kamilla Malverdi Barcelos.pdf
Tamanho:
3.52 MB
Formato:
Adobe Portable Document Format
Descrição:
Tese de doutorado
Carregando...
Imagem de Miniatura
Nome:
Carta Comprovante.pdf
Tamanho:
257.97 KB
Formato:
Adobe Portable Document Format
Descrição:
Carta Comprovante