Machine learning em química orgânica
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The search for intelligent computational systems capable of solving problems that are traditionally reserved for the human mind are a long-standing crusade. Several attempts to solve problems such as structural identification and synthesis of organic molecules using those toolboxes started in the 1970s, but the low capacity of available computational power and the lack of appropriate algorithms at the time were severe limitations, rendering many of these projects unfeasible. Currently, with a continuous increase in the processing capacity and with an enormous amount of chemical information accumulated in public and commercial databases, the interest in developing these systems has resurged. Several papers that have been published show that using machine learning algorithms it is possible to create programs capable of automatically generate synthetic paths for complex molecules of industrial and academic interest and also optimize reactions in an efficient and autonomous way.
Descrição
Citação
CHIAVEGATTI NETO, Attilio. Machine Learning em Química Orgânica. 2020. Trabalho de Conclusão de Curso (Graduação em Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13330.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
