A equação de Yang-Baxter para modelos de vértices com três estados

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

In this work we study the solutions of the Yang-Baxter equation associated to nineteen vertex models invariant by the parity-time symmetry from the perspective of algebraic geometry. We determine the form of the algebraic curves constraining the respective Boltzmann weights and found that they possess a universal structure. This allows us to classify the integrable manifolds in four different families reproducing three known models besides uncovering a novel nineteen vertex model in a unified way. The introduction of the spectral parameter on the weights is made via the parameterization of the fundamental algebraic curve which is a conic. The diagonalization of the transfer matrix of the new vertex model and its thermodynamic limit properties are discussed. We point out a connection between the form of the main curve and the nature of the excitations of the corresponding spin-1 chains.

Descrição

Citação

PIMENTA, Rodrigo Alves. A equação de Yang-Baxter para modelos de vértices com três estados. 2011. 65 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2011.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced