Estabilidade em equações de reação e difusão : interação entre difusibilidade e geometria em superfícies de revolução e um problema singularmente perturbado no caso de intersecção das raizes da equação degenerada

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

In this work we study two distinct problems. The first is a parabolic problem with variable diffusivity on surfaces of revolution. The objective is to find mechanisms of interaction between the diffusivity function and the geometry of the domain ensuring the existence of stationary stable nonconstant solution as well as non-existence. The second is a problem of reaction and diffusion singularly perturbed in the case of intersecting roots of the degenerate equation. We prove the existence and geometric profile of four families of stationary stable non-constant solutions to the parabolic equation. In both problems the main tools used are T-convergence theory and techniques of variational calculus.

Descrição

Citação

SÔNEGO, Maicon. Estabilidade em equações de reação e difusão : interação entre difusibilidade e geometria em superfícies de revolução e um problema singularmente perturbado no caso de intersecção das raizes da equação degenerada. 2013. 95 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced