Hipersuperfícies conformemente euclidianas com curvatura média ou escalar constante
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
In this work we study conformally flat hypersurfaces f: M3 ^ Q4(c) with three distinct principal curvatures in a space form with constant sectional curvature c, under the assumption that either its mean curvature H or its scalar curvature S is constant. In case H is constant, first we extend to any c G R a theorem due to Defever when c = 0 and show that there is no such hypersurface if H = 0. Our main results are for the minimal case H = 0. If c = 0, we prove that f (M3) is an open subset of a generalized cone over a Clifford torus in an umbilical hypersurface Q4(c) C Q4(c), c > 0, with c > c if c > 0. For c = 0, we show that, besides the cone over the Clifford torus in S3 C R4, there exists precisely a one-parameter family of (congruence classes of) minimal isometric immersions f: M3 ^ R4 with three distinct principal curvatures of simply-connected conformally flat Riemannian manifolds. Assuming S to be constant, we only study the case c = 0. We prove that f (M3) is an open subset of a cylinder over a surface of nonzero constant Gauss curvature in R3.
Descrição
Citação
REI FILHO, Carlos Gonçalves do. Hipersuperfícies conformemente euclidianas com curvatura média ou escalar constante. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8794.