• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Ciência da Computação - PPGCC
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Ciência da Computação - PPGCC
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Aprendizado de máquina multivisão aplicado à análise de correferência em um sistema de aprendizado sem fim

Thumbnail
View/Open
MANSANO_Alex_2018.pdf (1.486Mb)
Date
2018-03-01
Author
Mansano, Alex Fernandes
Metadata
Show full item record
Abstract
NELL (Never-Ending Language Learning) is the first never-ending learning system presented in the litera ture. It has been modeled to create a knowledge base in an autonomous way, reading the web 24 hours per day, seven days per week. In this paradigm, all knowledge acquired is used to improve the learning performance. In this paradigm we face cases where the same object can be named in several ways. These cases as called as correferents, and has great importance for the never-ending learning process, as long as the knowledge about certain entity in a textual base may be distributed among its denominations.As such, the co-reference analysis has a crucial role in NELL’s learning paradigm. In this paper, we approach the combination of different feature vectors as an optimization task performed by meta-heuristic techniques and artificial neural networks, in order to maximize the separability of samples in the feature space, being the optimization process guided by the accuracy of Optimum Path Forest and variations of Siamese Networks in a validation set. The experiments showed the proposed methodology can obtain much better results when compared to the performance of individual feature extraction algorithms.
URI
https://repositorio.ufscar.br/handle/ufscar/10227
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT