• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Interinstitucional em Estatística - PIPGEs
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Interinstitucional em Estatística - PIPGEs
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Penalized regression methods for compositional data

Thumbnail
View/Open
v__final_ufscar.pdf (1.903Mb)
Date
2018-12-10
Author
Shimizu, Taciana Kisaki Oliveira
Metadata
Show full item record
Abstract
Compositional data consist of known vectors such as compositions whose components are positive and defined in the interval (0,1) representing proportions or fractions of a "whole", where the sum of these components must be equal to one. Compositional data is present in different areas, such as in geology, ecology, economy, medicine, among many others. Thus, there is great interest in new modeling approaches for compositional data, mainly when there is an influence of covariates in this type of data. In this context, the main objective of this thesis is to address the new approach of regression models applied in compositional data. The main idea consists of developing a marked method by penalized regression, in particular the Lasso (least absolute shrinkage and selection operator), elastic net and Spike-and-Slab Lasso (SSL) for the estimation of parameters of the models. In particular, we envision developing this modeling for compositional data, when the number of explanatory variables exceeds the number of observations in the presence of large databases, and when there are constraints on the dependent variables and covariates.
URI
https://repositorio.ufscar.br/handle/ufscar/11034
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT