• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Politics
  • Instructions to authors
  • Contact
    • Politics
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia (CCET)
  • Programas de Pós-Graduação
  • Matemática (PPGM)
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia (CCET)
  • Programas de Pós-Graduação
  • Matemática (PPGM)
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Um teorema fundamental para hipersuperfícies em produtos torcidos semi-riemannianos

Thumbnail
View/Open
Dissertação Mynor Melara.pdf (778.1Kb)
Date
2019-03-15
Author
Melara Estrada, Mynor Ademar
http://lattes.cnpq.br/3320692889941905
Metadata
Show full item record
Abstract
The aim of this dissertation is to show a demonstration of a fundamental theorem for existence of isometric immersions for hypersurfaces in a warped product space where the base is a interval and the fiber is a spatial form, both with semi-Riemannian metrics, and in addition to that, present an application of this theorem for horizons in a Robertson-Walker spacetime of dimension 4, both based on the work of Marie Am´elie Lawn and Miguel Ortega in [J. Geom. Phys. 90 (2015) 55-70]. Such a result, generalizes fundamental theorems for hypersurfaces obtained, by B. Daniel for Riemannian products in [Trans. Amer. Math. Soc. 361 (2009) 6255-6282], by Q. Chen and C.R. Xiang for Riemannian warped products in the case of fibers with zero sectional curvature in [Acta Math. Sinica. 26 (2010) 2269-2282]; and by J. Roht, in the case of Lorentzian products with Riemannian fibers in [Int. J. Geom. Methods Mod. Phys. 8 (2011) 1269-1290]. Also, based on the demonstration of local uniqueness of B. Daniel’s fundamental theorem, we prove that the isometric immersion obtained in Lawn and Ortega’s theorem, is unique up to a global isometry.
URI
https://repositorio.ufscar.br/handle/ufscar/11173
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT