• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Interinstitucional em Estatística - PIPGEs
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Interinstitucional em Estatística - PIPGEs
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

A bayesian nonparametric approach for the two-sample problem

Thumbnail
View/Open
Versao_Final_Autorizada.pdf (1.224Mb)
Date
2018-11-19
Author
Console, Rafael de Carvalho Ceregatti de
Metadata
Show full item record
Abstract
In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930) assuming a nonparametric Bayesian approach. Considering X 1 ,...,X n and Y 1 ,...,Y m two inde- pendent i.i.d samples generated from P 1 and P 2 , respectively, the two-sample problem consists in deciding if P 1 and P 2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H 0 : P 1 = P 2 based on the posterior distribution of the distance d(P 1 ,P 2 ) between P 1 and P 2 . This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared to the well known Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer’s disease diagnostic.
URI
https://repositorio.ufscar.br/handle/ufscar/11579
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT