Algoritmos de estimação para modelos Markovianos não-homogêneos
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
Hidden Markov models are a statistical paradigm which can be used to mode stochastic processeswhere the observable values are directly dependent on a sequence of hidden random variables.In the context of the hidden Markov model, the system being modeled is considered a Markovprocess with non-observable hidden states, and for each hidden state we have the emission of anobservable value. Hidden Markov models can be homogeneous or non-homogeneous.In this investigation, we present estimation procedures used with Markov models. Parametersestimation is done under Bayesian and frequentist perspectives, comparing the performance ofthese methods using metrics such as mean squared error and bias. Model selection is carried outusing different criteria such as the Bayes Information Criterion and the Deviance InformationCriterion. The smallest mean squared errors and biases were obtained using the Bayesianestimation algorithm. In the frequentist perspective, the Stochastic EM algorithm obtainedresults which were similar to the Bayesian algorithm. The EM algorithm presented problems inthe estimation procedure in all situations studied
Descrição
Citação
SABILLÓN, Gustavo Alexis. Algoritmos de estimação para modelos Markovianos não-homogêneos. 2020. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12655.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
