Conditional independence testing, two sample comparison and density estimation using neural networks
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
Given the vast amount of data available nowadays and the rapid increase of computational processing power, the field of machine learning and the so called algorithmic modeling have seen a recent surge in its popularity and applicability.
One of the tools which has attracted great popularity is artificial neural networks due, to among other things, their versatility, ability to capture complex relations and computational scalability.
In this work, we therefore apply such machine learning tools into three important problems of Statistics: two-sample comparison, conditional independence testing and conditional density estimation.
Descrição
Citação
INÁCIO, Marco Henrique de Almeida. Conditional independence testing, two sample comparison and density estimation using neural networks. 2020. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13119.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
