Um estudo sobre wavestrap
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
Wavelets are basis of function spaces that can be used to represent both continuous
(functions) and discrete (sequences) signals; wavelets study gained great notoriety after
the work of Daubechies, who developed a wavelet family with compact support (DAUBECHIES,1988). Also in the second half of twentiest century the great advances in
computer processing allowed the emergence of various computation intensive methods,
such as bootstrap (EFRON, 1979).
One of the key assumptions to use bootstrap is that the sample elements are not correlated, generally that is not a characteristic found in time series analysis. This study
presents a review on wavestrap: a technique that joins both wavelet analysis and bootstrap resampling. By applying bootstrap to the wavelet transform coeficients we can
generate samples that retain roughly the same characteristics of the original signal. We
also analyze other nonparametric con fidence intervals based on bootstrap for estimating
the fi rst autocorrelation of fi rst order autorregressive processes.
Descrição
Palavras-chave
Citação
GREMES, Kaê da Silva. Um estudo sobre wavestrap. 2021. Trabalho de Conclusão de Curso (Graduação em Estatística) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14546.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
