Aplicação de SVM na classificação de falhas em rolamentos: uma comparação entre o domínio tempo e tempo-frequência

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

In order to enhance the operational efficiency of mechanical components, predictive maintenance has emerged as a critical technique for detecting potential failures before they lead to severe consequences such as accidents, productivity losses, and unexpected disruptions in production processes. This investigation employed vibration analysis to differentiate faults in spherical bearings, utilizing vibration signals collected from both faultless bearings and those bearing point defects. Statistical descriptors such as standard deviation, root mean square value, and shape factor were employed in the time domain, while the wavelet packet transform, featuring energy values and Shannon entropy in the time-frequency domain, was used to perform the analyses. The data was classified using the Support Vector Machine (SVM) machine learning algorithm. Both approaches demonstrated their effectiveness in discerning the signals, with prediction accuracies of 97.92% and 100%, respectively, highlighting the feasibility of this technique for fault identification in spherical bearings. The time-frequency approach was more effective than the time domain approach, as the latter yielded misclassifications in certain cases.

Descrição

Citação

MIRANDA, Isac José Silva. Aplicação de SVM na classificação de falhas em rolamentos: uma comparação entre o domínio tempo e tempo-frequência. 2023. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/17909.

Coleções

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil