Inferência Bayesiana para modelos de volatilidade estocástica baseados em mistura de escala da distribuição normal assimétrica
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
This dissertation aims to evaluate and compare the performance of the No-U-Turn Sampler
(NUTS) algorithm, implemented in the Stan software, in estimating the parameters of stochastic
volatility models with leverage based on scale mixtures of the skew-normal distribution. These
SV models can simultaneously capture important features of financial return series, such as
leverage effect, heavy tails, and asymmetry. The results of simulation studies show that, according
to bias and root mean squared error (RMSE) measures, the NUTS algorithm performs well.
When comparing the NUTS sampling approach with that of the stochvol package, we observe
that stochvol has faster execution times, but NUTS outperforms it in terms of effective sample
size. Additionally, we propose the use of the Leave-Future-Out Cross-Validation (LFO-CV)
technique for selecting stochastic volatility models and evaluate the performance of information
criteria and cross-validation techniques for model selection. Finally, we apply the developed
methodology to real return series.
Descrição
Citação
CONDORI, Ritha Rubi Huaysara. Inferência Bayesiana para modelos de volatilidade estocástica baseados em mistura de escala da distribuição normal assimétrica. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/17922.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
