Mostrar el registro sencillo del ítem

dc.contributor.authorCondori, Ritha Rubi Huaysara
dc.date.accessioned2023-05-03T13:56:22Z
dc.date.available2023-05-03T13:56:22Z
dc.date.issued2023-02-28
dc.identifier.citationCONDORI, Ritha Rubi Huaysara. Inferência Bayesiana para modelos de volatilidade estocástica baseados em mistura de escala da distribuição normal assimétrica. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17922.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/17922
dc.description.abstractThis dissertation aims to evaluate and compare the performance of the No-U-Turn Sampler (NUTS) algorithm, implemented in the Stan software, in estimating the parameters of stochastic volatility models with leverage based on scale mixtures of the skew-normal distribution. These SV models can simultaneously capture important features of financial return series, such as leverage effect, heavy tails, and asymmetry. The results of simulation studies show that, according to bias and root mean squared error (RMSE) measures, the NUTS algorithm performs well. When comparing the NUTS sampling approach with that of the stochvol package, we observe that stochvol has faster execution times, but NUTS outperforms it in terms of effective sample size. Additionally, we propose the use of the Leave-Future-Out Cross-Validation (LFO-CV) technique for selecting stochastic volatility models and evaluate the performance of information criteria and cross-validation techniques for model selection. Finally, we apply the developed methodology to real return series.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectModelos de volatilidade estocásticapor
dc.subjectMistura de escala da distribuição normal assimétricapor
dc.subjectAlgoritmo No-U-Turn Samplereng
dc.subjectLeave-future-out cross-validationeng
dc.subjectEfeito de Alavancagempor
dc.subjectScale mixtures of the skew-normal distributioneng
dc.subjectStochastic volatility modelseng
dc.subjectLeverage effecteng
dc.titleInferência Bayesiana para modelos de volatilidade estocástica baseados em mistura de escala da distribuição normal assimétricapor
dc.title.alternativeBayesian inference for stochastic volatility models based on scale mixtures of the skew-normal distributioneng
dc.typeDissertaçãopor
dc.contributor.advisor1Ehlers, Ricardo Sandes
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4020997206928882por
dc.description.resumoEsta dissertação tem como objetivo avaliar e comparar o desempenho do algoritmo No-U-Turn Sampler (NUTS), implementado no software Stan, na estimação dos parâmetros de modelos de volatilidade estocástica com alavancagem baseados em mistura de escala da distribuição normal assimétrica. Esses modelos SV conseguem capturar simultaneamente características importantes das séries de retornos financeiros, como efeito de alavancagem, caudas pesadas e assimetria. Os resultados dos estudos de simulação mostram que, de acordo com as medidas de viés e raiz quadrada do erro quadrático médio (RMSE), o algoritmo NUTS apresenta um bom desempenho. Ao comparar a abordagem de amostragem do NUTS com a do pacote stochvol, observamos que o stochvol apresenta tempos de execução menores, mas o NUTS supera essa abordagem em termos de tamanho efetivo da amostra. Além disso, propomos o uso da técnica de Validação Cruzada Leave-Future-Out (LFO-CV) para seleção de modelos de volatilidade estocástica e avaliamos o desempenho de critérios de informação e técnicas de validação cruzada para seleção de modelos. Finalmente, aplicamos a metodologia desenvolvida a séries de retornos reais.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEspor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOSpor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICApor
dc.description.sponsorshipId001por
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/9428128499731511por


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 Brazil