Métodos Bayesianos para seleção de modelos de mistura de distribuições normais e t de Student assimétricas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

In this work, we consider mixture models whose components of the mixture are modeled by the skew normal and skew t distributions. For the estimation of these skew mixtures models, we used a Bayesian approach, via Markov Chain Monte Carlo methods (MCMC), since this approach allows the development of a joint estimation procedure of the mixture components number and the associated parameters of the mixture components. We also use the Reversible jump method and propose the use of the Data-driven Reversible jump method for modelling the mixture of skew normal and skew t distributions, both to adjust and select the number of components of the mixture. We compare the performances of these two methods (Reversible jump and Data-driven Reversible jump) for selecting the best model through simulations. The Data-driven Reversible jump method was more accurate in pointing out the best model in the simulation studies carried out.

Descrição

Citação

MACERAU, Walkiria Maria de Oliveira. Métodos Bayesianos para seleção de modelos de mistura de distribuições normais e t de Student assimétricas. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/18350.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution 3.0 Brazil