Entendendo sintomas de depressão em redes sociais: uma abordagem de granularidade fina com volume de dados restrito
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
This study investigated the identification of depression signs in online text, utilizing
a set of fine-grained labels, composed of 21 distinct signs, in order to deep the collective
understanding of how depression is expressed online. Results indicated that emotional
and external signs of depression are frequent in social media, while somatic signs are
scarcely expressed; however this trend does not carry over to model performance, with
models performing best in somatic sign classification and struggling with some of the most
frequent signs.
Given these challenges regarding model performance, potentially related to data scar-
city, a series of techniques were evaluated with the goal of improving model performance,
including regularization techniques, data augmentation, prompt engineering and multi-
task learning, among which multi-task learning proved to be the most promising. With
the continuation of joint learning experiments, additional research questions concerning
which auxiliary tasks lead to positive transfer - and why - were answered: 3 of the 7
auxiliary tasks led to positive transfer, including depression sign classification under a
simplified taxonomy, fine-grained emotion classification and sentiment classification led
to positive transfer, however none of a set of 12 task characteristics proved to be good
predictors of said positive transfer
Descrição
Citação
MENDES, Augusto Rozendo. Entendendo sintomas de depressão em redes sociais: uma abordagem de granularidade fina com volume de dados restrito. 2024. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21150.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-ShareAlike 3.0 Brazil
