• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Politics
  • Instructions to authors
  • Contact
    • Politics
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia (CCET)
  • Programas de Pós-Graduação
  • Ciência da Computação (PPGCC)
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia (CCET)
  • Programas de Pós-Graduação
  • Ciência da Computação (PPGCC)
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Aprendizado de máquina baseado em separabilidade linear em sistema de classificação híbrido-nebuloso aplicado a problemas multiclasse

Thumbnail
View/Open
2598.pdf (3.194Mb)
Date
2009-06-29
Author
Tuma, Carlos Cesar Mansur
http://lattes.cnpq.br/0916152883066962
Metadata
Show full item record
Abstract
This master thesis describes an intelligent classifier system applied to multiclass non-linearly separable problems called Slicer. The system adopts a low computacional cost supervised learning strategy (evaluated as ) based on linear separability. During the learning period the system determines a set of hyperplanes associated to oneclass regions (sub-spaces). In classification tasks the classifier system uses the hyperplanes as a set of if-then-else rules to infer the class of the input attribute vector (non classified object). Among other characteristics, the intelligent classifier system is able to: deal with missing attribute values examples; reject noise examples during learning; adjust hyperplane parameters to improve the definition of the one-class regions; and eliminate redundant rules. The fuzzy theory is considered to design a hybrid version with features such as approximate reasoning and parallel inference computation. Different classification methods and benchmarks are considered for evaluation. The classifier system Slicer reaches acceptable results in terms of accuracy, justifying future investigation effort.
URI
https://repositorio.ufscar.br/handle/ufscar/407
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT