• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Ciência da Computação - PPGCC
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Ciência da Computação - PPGCC
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Sistema multiagente para controle de veículos autônomos

Thumbnail
View/Open
6183.pdf (2.745Mb)
Date
2014-06-10
Author
Branisso, Lucas Binhardi
Metadata
Show full item record
Abstract
Vehicle fleets are an important component in several applications, moving materials and people. Examples include material handling in warehouses, factories and port terminals, people transportation as in taxi fleets and emergency services, such as medical assistance, fire-fighters and police. Fleet operation is crucial for these applications: it can mean loss of money and commercial partners in case of industry, os loss of lives in case of emergency services. Controlling the fleet to achieve efficient levels of performance is a difficult problem, though, and becomes even harder as the fleet grows. Research in the area has been linking vehicle fleet operation to Multi-Agent Systems, because vehicle fleets are naturally distributed and Multi-agent System is a convenient abstraction to cope with distributed Artificial Intelligence problems. Therefore, it is proposed a Multi-Agent System to control vehicle fleets, focusing on material handling application in warehouses. The proposed system has three types of agents: Vehicle Agent, Loading Point Agent and Storage Point Agent. Agents interact amongst themselves through messages, trying to efficiently realize the material handling in a warehouse. System implementation is done through a simulation of a warehouse operation, built on top of MASON multi-agent system simulation platform. Task assignment strategies is also an important problem, therefore four strategies are shown and tested using the simulation: CNET, Fuzzy, DynCNET and FiTA. To enable comparison among these strategies, a Genetic Algorithm is employed to systematically search good parameters for each strategy. The proposed system, as well as the simulation, are offered as a framework for development of other vehicle fleets controlling multi-agent systems and/or task assignment strategies.
URI
https://repositorio.ufscar.br/handle/ufscar/570
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT