Um homomorfismo índice associado à ações livres de grupos abelianos finitos
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The main objective of this work is to generalize an article of Pedro Pergher, specifically the article A Zp - index homomorphism for Zp-spaces - Houston J. Math. - 31 - (2005) - N. 2 - 305-314 [7], replacing the cyclic group Zp by any finite abelian group. In his article, P. Pergher constructed an index-homomorphism associated to Zp-spaces, that is, topological spaces X equipped with free actions of the cyclic group Zp. This homomorphism has as domain the equivariant homology of X with Zp-coefficients, and Zp as target space. Our construction extends the construction of P. Pergher for arbitrary finite abelian groups G, in such a way that, similarly, our homomorphism has the equivariant homology of X with G-coefficients as domain, and G as target space. When restricted to G = Zp, our construction coincides with the Pergher index. It will be seen that our homomorphism allows achieving a Borsuk-Ulam result, concerning the existence of equivariant maps connecting two G-spaces subject to certain topological and homological conditions, when G has 2q elements with q odd. In the last chapter of the work, we detail a very recent result of Ikumitsu Nagasaki, Tomohiro Kawakami, Yasuhiro Hara and Fumihiro Ushitaki, which also proves our result of Borsuk-Ulam type above mentioned, using the Smith homology, and in such a way that all values of p are covered.
Descrição
Palavras-chave
Citação
URA, Sérgio Tsuyoshi. Um homomorfismo índice associado à ações livres de grupos abelianos finitos. 2011. 60 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2011.