• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Interinstitucional em Estatística - PIPGEs
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Interinstitucional em Estatística - PIPGEs
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Modelagem de dados de sistemas reparáveis com fragilidade

Thumbnail
View/Open
DissCCF.pdf (1.404Mb)
Date
2015-09-15
Author
Feitosa, Cirdêmia Costa
Metadata
Show full item record
Abstract
The usual models in repairable systems are minimal, perfect and imperfect repair, and, in the literature, the minimum repair model is the most explored. In repairable systems it is common that the same type of components are studied and in these cases is relevant to verify the heterogeneity between them. According to Vaupel et al. (1979), the standard methods for analysis of repairable systems data ignore the heterogeneity not observed and in some cases this should be considered. Such variability can be estimated from frailty models, characterized by using a random e ect. It is proposed that the minimum repair model with frailty in order to estimate the heterogeneity not observed between systems. For this model it was conducted a simulation study in order to analyze the frequentist properties of the estimation process. The application of a real data set showed the applicability of the proposed model, in which the estimation of the parameters were determined from maximum likelihood and Bayesian approaches.
URI
https://repositorio.ufscar.br/handle/ufscar/7233
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT