• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Matemática - PPGM
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Matemática - PPGM
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Hipersuperfícies conformemente euclidianas com curvatura média ou escalar constante

Thumbnail
View/Open
TeseCGRF.pdf (1.096Mb)
Date
2016-11-10
Author
Rei Filho, Carlos Gonçalves do
Metadata
Show full item record
Abstract
In this work we study conformally flat hypersurfaces f: M3 ^ Q4(c) with three distinct principal curvatures in a space form with constant sectional curvature c, under the assumption that either its mean curvature H or its scalar curvature S is constant. In case H is constant, first we extend to any c G R a theorem due to Defever when c = 0 and show that there is no such hypersurface if H = 0. Our main results are for the minimal case H = 0. If c = 0, we prove that f (M3) is an open subset of a generalized cone over a Clifford torus in an umbilical hypersurface Q4(c) C Q4(c), c > 0, with c > c if c > 0. For c = 0, we show that, besides the cone over the Clifford torus in S3 C R4, there exists precisely a one-parameter family of (congruence classes of) minimal isometric immersions f: M3 ^ R4 with three distinct principal curvatures of simply-connected conformally flat Riemannian manifolds. Assuming S to be constant, we only study the case c = 0. We prove that f (M3) is an open subset of a cylinder over a surface of nonzero constant Gauss curvature in R3.
URI
https://repositorio.ufscar.br/handle/ufscar/8794
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT