• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Interinstitucional em Estatística - PIPGEs
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Interinstitucional em Estatística - PIPGEs
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Bayesian and classical inference for the generalized gamma distribution and related models

Thumbnail
View/Open
Tese de Doutorado (1.502Mb)
Autorização do Orientador (93.60Kb)
Date
2018-02-22
Author
Ramos, Pedro Luiz
Metadata
Show full item record
Abstract
The generalized gamma (GG) distribution is an important model that has proven to be very flexible in practice for modeling data from several areas. This model has important sub-models, such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work, our main objective is to develop different estimation procedures for the unknown parameters of the generalized gamma distribution and related models (Nakagami-m and gamma), considering both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple way necessary and sufficient conditions to check whether or not objective priors lead proper posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can easily check if the obtained posterior is proper or improper directly looking at the behavior of the improper prior. These theorems are applied to different objective priors such as Jeffreys's rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies were conducted to investigate the performance of the Bayes estimators. Moreover, maximum a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple closed-form expressions are proposed Numerical results demonstrate that the MAP estimators outperform the existing estimation procedures and produce almost unbiased estimates for the fading parameter even for a small sample size. Finally, a new lifetime distribution that is expressed as a two-component mixture of the GG distribution is presented.
URI
https://repositorio.ufscar.br/handle/ufscar/9962
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT