EIFuzzCND: uma estratégia incremental para classificação multiclasse e detecção de novidades em fluxos de dados
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The study addresses novelty detection in data streams, emphasizing the significance of this task in high-volume and high-velocity information environments. It proposes substantial improvements to the EFuzzCND algorithm, leading to the development of EIFuzzCND. These enhancements encompass an incremental approach, a reduction in dependence on true labels, and the implementation of the Incremental Confusion Matrix. Experiments validate the efficacy of EIFuzzCND across diverse scenarios, and result analysis underscores its capability to handle specific challenges, such as sudden concept shifts. The work contributes to advancing novelty detection in data streams by providing an innovative and practical approach, concluding with recommendations for future research.
Descrição
Citação
BRUZZONE, Lucas Ricardo Duarte. EIFuzzCND: uma estratégia incremental para classificação multiclasse e detecção de novidades em fluxos de dados. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/18959.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution 3.0 Brazil
