Distribuição normal assimétrica para dados de expressão gênica
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
Microarrays technologies are used to measure the expression levels of a large amount of genes or fragments of genes simultaneously in diferent situations. This technology is useful to determine genes that are responsible for genetic diseases. A common statistical methodology used to determine whether a gene g has evidences to diferent expression levels is the t-test which requires the assumption of normality for the data
(Saraiva, 2006; Baldi & Long, 2001). However this assumption sometimes does not agree with the nature of the analyzed data. In this work we use the skew-normal distribution
described formally by Azzalini (1985), which has the normal distribution as a particular case, in order to relax the assumption of normality. Considering a frequentist approach
we made a simulation study to detect diferences between the gene expression levels in situations of control and treatment through the t-test. Another simulation was made to
examine the power of the t-test when we assume an asymmetrical model for the data. Also we used the likelihood ratio test to verify the adequability of an asymmetrical model
for the data.
Descrição
Citação
GOMES, Priscila da Silva. Distribuição normal assimétrica para dados de expressão gênica. 2009. 75 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.