Modelo hierárquico Bayesiano não paramétrico aplicado em modelagem de tópicos

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

Given the growing need and importance of analyzing textual data in the field of artificial intelligence, models that can better understand human language and deal with unstructured data are increasingly relevant gains. In this work, we developed a study on the Hierarchical Dirichlet Process (HDP) in modeling textual topics, exploring its practical aspects by applying it to a data set (\textit{corpus}) of legal processes, composed of three types of different procedures. We will discuss the main properties of HDP, from a Bayesian perspective, assuming that the data comes from a Multinomial probability distribution, based on the \textit{bag-of-words} textual representation model, commonly used in natural language processing . We also proceeded with some textual pre-processing techniques, which resulted in more parsimonious documents (data), and with a simulation study to verify the model's performance. At the end of the work, we present the results of the applications carried out and discuss the issues of data analysis in jurimetry.

Descrição

Citação

CUNHA, Robson Ortz Oliveira. Modelo hierárquico Bayesiano não paramétrico aplicado em modelagem de tópicos. 2024. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19866.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil