Redução de dimensionalidade usando agrupamento e discretização ponderada para a recuperação de imagens por conteúdo

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

This work proposes two new techniques of feature vector pre-processing to improve CBIR and image classification systems: a method of feature transformation based on the k-means clustering approach (Feature Transformation based on K-means - FTK) and a method of Weighted Feature Discretization - WFD. The FTK method employs the clustering principle of k-means to compact the feature vector space. The WFD method performs a weighted feature discretization, privileging the most important feature ranges to distinguish images. The proposed methods were employed to pre-process the feature vector in CBIR and in classification approaches, comparing the results with the pre-processing performed by PCA (a well known feature transformation method) and the original feature vector: FTK produced a reduction in the feature vector size with an improving in the query precision and a improvement in the classification accuracy; WFD improved the query precision up to and a improvement in the classification accuracy; the combination of WFD and FTK improved also the query precision and a improvement in the classification accuracy. These are very important results, especially when compared with PCA results, which leads to a minor reduction in the feature vector size, a minor increase in the query precision and a minor increase in the classification accuracy. Also the proposed approaches have linear computational cost where PCA has a cubic computational cost. The results indicate that the proposed approaches are well-suited to perform image feature vector pre-processing improving the overall quality of CBIR and classification systems.

Descrição

Citação

PIROLLA, Francisco Rocha. Redução de dimensionalidade usando agrupamento e discretização ponderada para a recuperação de imagens por conteúdo. 2012. 75 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced