O produto tensorial não abeliano de grupos e aplicações

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

The nonabelian tensor square GG of a group G was introduced by R. K. Dennis [8] in a search for new homology functors having a close relationship to K-theory and it is based on the work of C. Miller [14]. Subsequently R. Brown and J.-L. Loday [6] discovered a topological significance for the tensor square, namely, that the third homotopy group of the suspension of an Eilenberg MacLane space K(G; 1) satisfies _3 �����SK(G; 1) _ _= ker(_1), where _1 : GG ! G is the “comutator homomorphism”: _1(gh) = [g; h] = ghg�����1h�����1, 8g; h 2 G. They also defined the tensor product GH of two distinct groups acting “compatibly” on each other and showed that it arose in a certain “universal crossed square”. The main purpose of this work is to present the first properties of the nonabelian tensor product of groups and its applications in homotopy theory.

Descrição

Citação

FIGUEIREDO, Gustavo Cazzeri Innocencio. O produto tensorial não abeliano de grupos e aplicações. 2015. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7468.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced