Melhoria do tratamento de obstáculos na abordagem de agrupamento de dados espaciais SWMU clustering
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The technological has been improved considerably in recent years, providing the great benefits to several areas of application. Among these areas, agriculture had a great boost, enabling the increasing of the production and at the same time reducing costs and environmental impacts through crop management techniques, thus in this sense practicing the concepts of Precision Agriculture (AP). One of the methods used in PA is to design the planted area in smaller plots with similar values of soil and plant attributes, known as management zones or differentiated management units (UGDs). In this way, spatial data clustering algorithms are used to create UGD maps, in which they depict soil variability. Spatial Ward’s Management Units Clustering (SWMU Clustering) is an approach to spatial data clustering that enables the design of UGDs in AP. Its main advantage over related approaches is the significant reduction of stratification in clusters, obtaining maps of UGDs that are easily interpretable by the end user. This Master’s research investigated how to improve the management of spatial obstacles performed by the SWMU Clustering approach. In this sense, two new strategies were proposed: Replacement Strategy for the Set of Internal Samples to Obstacles and Buffer Strategy. These strategies were compared to the original strategy of the SWMU Clustering approach, showing that the Buffer strategy generated the best results. In addition, as a result of this research, an web application was developed for the SWMU Clustering approach, making it available as a service so that the end user can interact with the SWMU Clustering ap, from sending the input data until the visualization of the UGD results.
Descrição
Citação
GALLO, Gabriel Passatuto. Melhoria do tratamento de obstáculos na abordagem de agrupamento de dados espaciais SWMU clustering. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13671.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
