Detecção automática de postagens possivelmente depressivas em redes sociais
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
Currently, depression is one of the most worrisome mental health issues. In Brazil, in 2019, 10.2% of the adult population reported having been diagnosed with depression according to data from the National Health Survey. Identifying people with a possible depressive profile allows adequate monitoring by mental health professionals. In this sense, online social networks such as Twitter can be important allies. This monography presents experiments carried out for the automatic classification of Twitter posts (or a collection of posts produced by a given user) containing content that denotes some symptom of depression, as well as classification of depressive posts and users through an ensemble model composed of symptom classifiers. Logistic regression showed the best results in both symptom and depression classification tasks (average F 1 equal to 57% for the former, F 1 equal to 64% for the latter). This work is part of the Amive project (FAPESP Regular Grant #20/05157-9).
Descrição
Palavras-chave
Citação
MENDES, Augusto Rozendo. Detecção automática de postagens possivelmente depressivas em redes sociais. 2021. Trabalho de Conclusão de Curso (Graduação em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15174.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
