Incorporando correlações entre exemplos para classificação multirrótulo via espaço de classes
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
Multi-label classification is a machine learning task where instances can be classified into two or more labels simultaneously. In this task, there exist correlations between the instances belonging to same or similar sets of labels. This work proposes the incorporation of instance correlations by modifying the multi-label datasets. The label-space was used to create new features, which represent these correlations. The original and modified datasets were used with different multi-label classification methods. Experiments have shown that the method obtained better classification results in comparison with its original datasets counterparts for most of the algorithms. All methods were evaluated with measures specifically designed for multi-label problems.
Descrição
Citação
ABREU, Iuri Bonna Mauricio de. Incorporando correlações entre exemplos para classificação multirrótulo via espaço de classes. 2021. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15892.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
