Classificação de centros Hamiltonianos polinomiais biquadrados, e isocronicidade trivial versus formas canônicas para aplicações polinomiais no plano de Jacobiano unitário

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

This work, we classify a non- degenerate center at the origin of a planar Hamiltonian system associated to a function of the form $H(x,y)=A(x)+B(x)y^2 + C(x)y^4$, where $A$, $B$ and $C$ are polynomials. After seing a relation between trivial isochronous centers and the Jacobian Conjecture on the plane, we study polynomial maps $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^{2}$, with $f(0,0)=(0,0)$ and Jacobian determinant constant and equal to $1$, and we present sufficient conditions to its injectivity. At last, as a consequence of the study, we characterize the trivial isochronous centers of planar polynomial Hamiltonian system associated to polynomial function of degrees $10$, $12$, $14$ and $22$.

Descrição

Citação

APPIS, Raul Felipe. Classificação de centros Hamiltonianos polinomiais biquadrados, e isocronicidade trivial versus formas canônicas para aplicações polinomiais no plano de Jacobiano unitário. 2022. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/17220.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil