Aplicando XAI na comparação de redes neurais e árvores de decisão

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de São Carlos

Resumo

The new focus on artificial intelligence confronts us with a long-standing concern data on such algorithms, the distinction between white-box and black box. This study seeks to explore analysis techniques, known as Explainable AI (XAI) for such models, especially in so-called black-box algorithms, those in which the details of his decision-making are not completely known. Is important the explainability of the AI model, as opaque models can covertly inflict ethical and trustworthiness issues, including the possibility of bias, discrimination, privacy and rights violations. The chosen approach aims to study and apply some of these XAI techniques to unravel the logic of an algorithm considered black-box, using a progressive approach, which explores the fundamentals of a neural network through to application of explainable techniques, presenting a comparison of behavior between neural networks and decision tree. Finally, comparisons are made between metrics of the models and the results found are discussed. ​

Descrição

Citação

MARINHO, Eduardo Augusto. Aplicando XAI na comparação de redes neurais e árvores de decisão. 2024. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19262.

Coleções

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil