Um framework conceitual para a seleção de sensores móveis para fenotipagem digital de estudantes com possível perfil depressivo
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
This capstone project presents the development of a framework for selecting mobile sensors for the digital phenotyping of university students with possible depressive profiles. Inspired by a seminal study by Torous that analyzes digital phenotyping in varied contexts, this work performs a critical reinterpretation of this literature to adapt and apply concepts to the specific context of depression in academic settings. The proposed framework was developed based on a review of existing work that uses behavioral data captured by sensors on smartphones and other mobile devices, such as GPS and accelerometers, to identify patterns that may be related to depressive symptoms. The methodology involved collaborative discussions with experts in computing and health, seeking to align the technical capabilities of the sensors with the diagnostic and therapeutic needs of potentially depressed students. As a result, possible relationships are presented between the data collected by the sensors and symptoms of depression. This study aims to provide a basis for future practical implementations of computer systems
mental health support, using accessible and non-intrusive technologies in educational contexts.
Descrição
Palavras-chave
Citação
RIBEIRO, Matheus Coelho de Moura. Um framework conceitual para a seleção de sensores móveis para fenotipagem digital de estudantes com possível perfil depressivo. 2024. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20172.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
