Algoritmo para a extração incremental de sequências relevantes com janelamento e pós-processamento aplicado a dados hidrográficos
Carregando...
Arquivos
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The mining of sequential patterns in data from environmental sensors is a challenging task: the data may show noise and may also contain sparse patterns that are difficult to detect. The knowledge extracted from environmental sensor data can be used to determine climate change, for example. However, there is a lack of methods that can handle this type of database. In order to reduce this gap, the algorithm Incremental Miner of Stretchy Time Sequences with Post-Processing (IncMSTS-PP) was proposed. The IncMSTS-PP applies incremental extraction of sequential patterns with post-processing based on ontology for the generalization of the patterns. The post-processing makes the patterns semantically richer. Generalized patterns synthesize the information and makes it easier to be interpreted. IncMSTS-PP implements the Stretchy Time Window (STW) that allows stretchy time patterns (patterns with temporal intervals) are mined from bases that have noises. In comparison with GSP algorithm, IncMSTS-PP can return 2.3 times more patterns and patterns with 5 times more itemsets. The post-processing module is responsible for the reduction in 22.47% of the number of patterns presented to the user, but the returned patterns are semantically richer. Thus, the IncMSTS-PP showed good performance and mined relevant patterns showing, that way, that IncMSTS-PP is effective, efficient and appropriate for domain of environmental sensor data.
Descrição
Palavras-chave
Data mining (Mineração de dados), Dados espaçotemporais, Extração de padrões sequenciais, Janelamento de dados, Ontologia difusa, Algoritmo de mineração de dados, Dados reais, Generalização de padrões, Incremental, Data mining algorithm, Time-spacial data, Real data, Sequential pattern extraction, Patterns generalization, Data windowing, Incremental data mining, Fuzzy ontology
Citação
SILVEIRA JUNIOR, Carlos Roberto. Algoritmo para a extração incremental de sequências relevantes com janelamento e pós-processamento aplicado a dados hidrográficos. 2013. 119 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.